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Abstract 

The three-dimensional configuration of crystallized 
structures is obtained by reading off partial information 
about the Fourier transform of such structures from 
diffraction data obtained with an X-ray source. We 
consider a discrete version of this problem and discuss 
the extent to which 'intensity only' measurements as well 
as 'higher-order invariants' can be used to settle the 
reconstruction problem. This discrete version is an 
extension of the study undertaken by Patterson in terms 
of 'cyclotomic sets', corresponding to arrangements of 
equal atoms that can occupy positions on a circle 
subdivided into N equally spaced markings. This model 
comes about when the usual three-dimensional Fourier 
transform is replaced by a one-dimensional discrete 
Fourier transform. The model in this paper considers 
molecules made up of atoms with possibly different 
(integer-valued) atomic numbers. It is shown that 
information of order six suffices to determine a structure 
uniquely. 

I. Introduction 

The phase problem is the problem in crystallography. It 
stems from the fact that diffraction peak intensity 
measurements give only the magnitudes and not the 
phases of the Fourier coefficients needed to accomplish 
the three-dimensional reconstruction of the molecules in 
the crystal exposed to the X-ray beam. 

The work of Patterson (1934, 1935) represented an 
important step forward. With the introduction of the F 2 
maps - widely known as the Patterson maps - one finally 
had a systematic way to attempt a reconstruction. In 
the period following Patterson's fundamental paper 
(Patterson, 1935), several workers used his method very 
successfully. 

The first realization that different structures can 
correspond to the same diffraction data appears to have 
been by Pauling & Shappel (1930) in reference to the 
mineral bixbyite, whose structure had first been tenta- 
tively determined by Zachariasen (1928). In fact, even 
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Patterson failed to notice this instance, and at one point 
he announced (Patterson, 1939) the result that a unique 
structure corresponds to a given set of intensities. Pauling 
quickly pointed out the problem and this got Patterson 
started in a long effort to determine homometric 
structures, i.e. those that correspond to the same 
Patterson map. For a beautiful account of this, as well 
as a wealth of information on the history of the subject, 
the reader should consult Glusker, Patterson & Rossi 
(1987). It is interesting to notice that from the beginning 
Patterson sought out the assistance of mathematicians. 
Beside Wiener, with whom he had several contacts in the 
early days of his work, his 1944 paper refers to 
conversations with J. Oxtoby and P. Erdts (Patterson, 
1944). The book by Glusker, Patterson & Rossi (1987) 
contains an interesting article by Oxtoby (1987). 

The study of so called homometric cyclotomic sets, i.e. 
arrangements of identical atoms on some of the Nth roots 
of unity, not determined by their 'diffraction pattern', 
was initiated by Patterson (1944) and continued by 
Buerger (1976), Chieh (1979) and Iglesias (1981). 

A different line of attack on the determination of 
(strictly) homometric sets was undertaken by the 
mathematician Calder6n and the crystallographer 
Pepinsky (Caldertn & Pepinsky, 1952). Their work 
was later expanded by Franklin (1974) as well as by 
Bloom (1977) and Bloom & Golomb (1977). The 
examples that they produce are, however, of a different 
nature than those studied by Patterson. They correspond 
to 'strictly homometric structures', in the nomenclature 
of Franklin (1974). 

The comments above deal with 'nonuniqueness' 
results based on 'intensity only' measurements. Now 
we take up the methods that are systematically used in 
structure determination. The difficulty of the problem is 
reduced by the presence of one or a few heavy atoms, 
and in fact most of the moderately complex structures 
determined up to the fifties exploited this feature. When 
such heavy atoms are not present, there are two ways out. 

For really large molecules (beyond a few hundred 
atoms per unit cell), the method of choice in solving 
the 'phase problem' is a lot of hard chemistry work 
consisting of inserting such a heavy atom without 
altering the rest of the structure. This is known as the 
'isomorphic replacement method', for which M. Perutz 
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(and J. Kendrew) received the Nobel Prize for Chemistry 
in 1962. He used this method to determine the structure 
of hemoglobin, a molecule with around 10000 atoms. 

A different way to get around the difficulty of the 
missing phase information was proposed in a paper by 
Harker & Kasper (1948), which was further developed 
and expanded by the work of Karle & Hauptman (1950), 
as well as the contribution of Sayre (1952). This method 
has become very popular for molecules of up to around 
200 atoms and it was the basis for the award in 1985 of 
the Nobel Prize for Chemistry to the chemist J. Karle and 
the mathematician H. Hauptman. 

This method consists of using information pertaining 
to 'higher-order invariants' involving certain combina- 
tions of the Fourier coefficients of the unknown 
structure. The simplest invariant is the intensity of the 
radiation scattered in each direction k. If F(k) denotes the 
(unknown) Fourier component of the structure under 
investigation, this intensity is given by 

F ( k ) F ( - k ) .  

The 'higher-order invanants' alluded to above are 
products of the form 

F(k~)F(k2)F(k3). . .F(kr) ,  k~ + k 2 + . . .  + kr = 0. 

A product of this type is called an 'invariant of order r ' .  
We take the attitude that these quantities are known. For 
a discussion of the way in which these quantities are 
'estimated' in practice, as well as a good discussion of 
the probabilistic methods that form the backbone for this 
effort, one should consult Bricogne (1988), Giacovazzo 
(1992), Klug (1958) and Wilson (1949). 

Although the 'direct methods' as usually implemented 
rely on statistical estimators for several linear combina- 
tions of phases based on the available intensity 
measurements, we assume here that these higher-order 
invariants are given to us as a full complex number. In 
particular, we strive to distinguish between a structure 
and its 'enantiomorph' (see Hauptman, 1991). 

2. Main results 

We pick any positive integer N and consider an arbitrary 
integer- (or, more generally, rational-) valued function 

C 0 ,  C 1 , C 2 ,  C 3 • . . , CN-I 

defined on the equispaced markings on the unit circle 
obtained by its subdivision into N equal pieces (the Nth 
roots of unit). If the sequence cj were to take values from 
the set {0,1}, we would be dealing with one of 
Patterson's 'cyclotomic' sets, while the case of integer- 
valued cj allows us to consider arrangements of atoms 
with different atomic numbers. We can prove our results 
for arbitrary (including negative) integer-valued func- 
tions cj. It is important to note that our 'counterexamples' 

to several 'stronger versions' of our results feature 
nonnegative functions cj, and thus respect the physical 
notion of positivity. 

Denote by d k, k = 0, 1,2 . . . .  N -  1, the (discrete) 
Fourier coefficients that correspond to the 'unknown 
structure' cj, given by 

N - I  

d k = ~-~cjw jk, w = exp(2rri/N). 
j = 0  

The sequence d k is originally defined for 
k -- 0, 1 . . . . .  N - 1. It is clear that the definition above 
allows one to extend d k to a sequence defined for all 
integer values of the index k, and that the resulting 
sequence is periodic with period N. Any reference to the 
index k in the sequence dk is to be interpreted 'modulo 
N', meaning that we always take away enough integer 
multiples of N to bring the quantity in question into the 
range 0 , 1 , 2  . . . . .  N - 1 .  It is clear that the same 
considerations apply to the sequence cj, which will be 
considered as defined for all integer j as a periodic 
function with period N. 

Mathematically, it makes no difference if we are 
considering sequences cj that are integer-valued or 
rational: after appropriate scaling, the second case 
reduces to the first one. We state our results for 
integer-valued sequences and, moreover, make the 
blanket assumption (which is physically natural) that 

d0~0. 

We assume that we are given the 'rth-order invar- 
iants', i.e. all products of the form 

dk dk2d~,3...dkr, k, + k  2 + . . .  + k  r = O ( m o d N ) .  

Our main result is that, if two sequences c~ 1) and c~ 2) 
have the same rth-order invafiants for r = 1, 2, 3, 4, 5, 6, 
then one sequence is a shift of the other, i.e. 

C~2) ^ 0 )  = ¢)+a for some fixed integer a and all j. 

Of course, equality of first- and sixth-order invariants 
implies equality for the orders in between. 

We show that this result cannot be improved since 
there are noncongruent structures with the same 
invariants of orders 1, 2, 3, 4 and 5. For instance, in 
the case of N = 6, the two sequences 

[11,25,42,45,31,14]  and [10,21,39,46,35,17]  

of length six have the same invariants of orders 1, 2, 3, 4 
and 5. 

In the special case where the integer N is odd, we show 
that equality of invariants up to order four will suffice. 
These uniqueness results will, we hope, lead to practical 
reconstruction algorithms. Our results, which apply to 
integer sequences and not just to sequences of O's and 
l 's ,  should allow one to apply these algorithms for 
values N that are smaller than they would be otherwise. 



312 DETERMINATION OF GENERALIZED PATTERSON CYCLOTOMIC SETS 

Among the results found below, we give a method for 
constructing arbitrarily large pairs of 'cyclotomic sets' 
that share their invariants of orders 1, 2 and 3 but 
represent different structures. While the case of arbitrary 
integer-valued sequences requires information of order 
six, it is possible that, in the original case considered by 
Patterson (cj either 0 or 1), a structure can be Uniquely 
determined by information of order four. A result given 
in the final section of this paper points in this direction. 
The paper includes in the final section examples on 
nonuniqueness in dimensions 2 and higher that go 
beyond simply taking Cartesian products of one-dimen- 
sional examples. We are starting work on higher- 
dimensional uniqueness theorems and corresponding 
constructive algorithms. Let us add that some of the 
results given here were obtained 20 years ago following 
conversations with D. Sayre. Our interest in the subject 
was reawakened by a recent conversation with Harold 
Shapiro. 

We should point out that this general type of 
reconstruction problem arises in other areas as well. In 
these applications, the underlying group is usually a 
continuous group such as the real line R, and there are 
general results valid for all locally compact Abelian 
groups (see Adler & Konheim, 1962; Chazan & Weiss, 
1970). The present authors have also formulated and 
proved results for non-Abelian groups and homogeneous 
spaces of these groups, but that is the topic of another 
paper. One general result in the Abelian case is that 
knowledge of rth-order invariants for all r enables one to 
reconstruct the original function up to a shift, and it is 
easy to construct examples, for each integer r, of pairs of 
functions that have the same invariants up to order r but 
where the r + 1 invariants differ. One does this by means 
of functions whose Fourier transforms are zero 'most of 
the time'. It is a general principle that, the more often the 
Fourier transforms are nonzero, the easier it is to 
reconstruct functions using small-order invariants. The 
underlying theme of this paper is that the hypothesis that 
our functions on these finite cyclic groups are rational 
(which after appropriate scaling is reduced to being 
integer-valued) allows us to exert some control over 
where the Fourier transform vanishes, and the task is to 
figure out how to exploit these nonvanishing properties. 

3. Mathematical tools 

In this section, we collect the results about the group Z N 
of integers mod N (or equivalently of Nth roots of unity) 
that play a useful role in this paper. 

Z N is a group under addition modN, and one can 
equivalently think of the multiplicative group of Nth 
roots of unity 

w i, j = O ,  1 , 2  . . . . .  N - l ,  w = e x p ( 2 r r i / N ) .  

3.1. The first important observation is that Z N can be 
partitioned into classes made up of roots of different 

'orders'. We say that j in Z N (or equivalently w' with 
j = 0, 1, 2 . . . .  N - 1) is a 'root of order o ( j ) '  if  o ( j )  is 
the smallest integer such that j o ( j )  is divisible by N, 
explicitly 

o ( j )  = N / g . c . d . ( j , N ) .  

It follows that the 'possible orders' are given by the 
divisors of N. If N is given by 

kl k2 k3 k 
N = Pl P2 P3 . .  "Pr, 

p/ different prime numbers then the 'orders' o ( j )  are of 
the form 

11 _12~13 I r 
O --" Pl b'2b'3 • • "Pr 

with I i < ki, i =  1 ,2 ,3  . . . . .  r. 

3.2. The Nth roots of unity of a given order m 
constitute the roots of the so-called (monic) cyclotomic 
polynomial Fm. These polynomials are explicitly defined 
by 

Fm(x)  - -  H [x - exp (2rr ia /m)] .  
a between I and m 

relatively prime to m 

They have integer coefficients and play a fundamental 
role in the factorization of a n y  polynomial with integer 
coefficients when one is interested in roots that happen to 
be roots of unity. In fact, we have the following 
important facts: 

(a) x ~ - 1 = H Fa(x);  
d between 1 and m 

that divide m 

(b) each cyclotomic polynomial is irreducible over the 
integers (or even over the rationals). 

3.3. A key fact for us in the mathematical discussions 
is the so-called Chinese Remainder theorem, which states 
that, if we are given the integers a 1, a 2 . . . . .  a r and 

m l, m 2 . . . . .  m r and we look for an integer solution x to 
the system of congruencies 

x --= a i (mod  ml) 

x ---- a2(mod m2) 

x --= a~(mod mr), 

then there is a solution x if, and only if, for each i, j the 
g.c.d, of mi, mj divides the difference a i - a j .  A 

particularly simple case arises when the m i are relatively 
prime, since in that case there are no conditions on the 
a's.  This is the version of the theorem proved in most 
books (see for instance Ireland & Rosen, 1982). For the 
more general version one can consult LeVeque (1956). 
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3.4. Given the sequence c 0, C l , . . .  , CNj , define the 
polynomial P(x) associated with cj by 

N - I  
e(x)  = ~ cjx  j. 

j = 0  

Notice that d k -- P(w k) with w = exp(2rri/N).  
An important operation on the polynomial P(x) 

defined above is given by 

e*(x) -- xdege e (1 /x ) .  

The sequence corresponding to P* is (up to a shift in case 
that deg P < N - 1) given by 

C N -  1 , C N -  2 . . . . .  C 1 , C 0- 

N o t i c e  that the Fourier coefficients of the sequence 
associated with the polynomial P(1/x)  are related to 
those resulting from P(x) by conjugation. The effect of 
multiplying by the power x aege is one of adding a phase 
factor that disappears in forming the rth-order invariants. 
A consequence of this is that, in the case of r = 2 
(ordinary intensity measurements), one cannot distin- 
guish between a structure and its 'reversed' (or reversed 
and shifted) image. When one considers higher-order 
invariants as we do here, it is in principle possible to 
distinguish a structure from its reversed image: the 
invariant is no longer real-valued and the process of 
reversing the structure has the effect of conjugating the 
invariant. To be entirely honest, one could add that in 
practice one estimates the real part of these invariants. As 
mentioned earlier, in this paper we take the attitude that 
the complete complex number is known. 

3.5. The expressions 

dk 1 dk 2d~3 . . . dkrd-~k,+k2+...+kr) 

and 

N - I  

~-~ Cl+lt Cl+12Cl+l a • . .  Cl+lrCl 
/ = 0  

are related by a multiple Fourier transform. 
The special case of r = 1 and a sequence cj that takes 

only values in {0,1} gives the values of 

N - I  

M(l l )  = Y~ct+tlct, 
/ = 0  

the number of elements whose mutual distances are 0, l, 
2 etc. This justifies the name 'homometric sets' for those 
with the same value of dkd_~, k = 0, 1 . . . .  , N. This 
information (second-order invariants) is directly acces- 
sible from intensity measurements. Pairs of noncongruent 
homometric sets have been constructed starting with the 
work of Patterson (see Buerger, 1976; Chieh, 1979; 
Franklin, 1974; Patterson, 1944). Here is a general 
method for constructing homometric pairs. Take two 

polynomials A(x) and B(x) and an integer s. Define 
P~(x)=A(x)B(x),P2(x)=x~A(x)B*(x). Then, the se- 
quences that correspond to P~ and P2 are homometric. 
This goes back to Patterson, and has been used by many 
other authors too, as we see in §6. It is a recent result of 
Rosenblatt (1984) that all examples of homometric sets 
can be produced in this fashion. 

4. Second-order invariants 

The purpose of this section is to highlight examples of 
'ambiguities' in the phase problem that had been 
discussed earlier in the literature. The examples are 
selected to illustrate different aspects of the problem. The 
first two examples give 'strictly homometric sets' 
(Franklin, 1974). They can be used directly on the 
integers, Z, or on Z N once N > 12 in the first case or 
N > 17 in the second case. The third example is an 
example of (nonstrictly) homometric pairs and requires 
N = 8 .  

We start by discussing a construction proposed by 
Calder6n & Pepinsky in (1952) and further analyzed by 
Franklin (1974). 

Consider the polynomials PI and P2 given by 

(x 3 + x +  1)(x 9 + x  4 + 1) 

and 

(x 3 + x  2 + 1)(x 9 + x  a + 1), 

respectively. One expands them to get 

X 12 -~-X l0 21-X 9 -~-X 7 -~-X 5 -Jl-X 4 -JI-X 3 -~- X -]- 1 

and 

X 12 " ~ X  II "~-X 9 "~-X 7 -~-X 6 "-~-X 4 "~-X 3 "-~-X 2 -~- 1, 

respectively. One sees that 

P~(x)P~(1/x) = Pz(x)P2(1/x).  

If one considers the difference sets resulting from the 
exponents that go along with nonzero coefficients in P~ 
and P2, respectively, namely 

{0, 1, 3,4, 5,7, 9, 10, 12} and {0, 2, 3,4, 6, 7, 9, 11, 12}, 

one gets the same values and the same (assorted) 
multiplicities. Compare this to the example due to 
Bloom (1977), where the multiplicities will all be equal 
to one. In Bloom's case, the polynomials Q~ and Q2 are 
given by 

and 

X 17 " + X  12 - l t -x l0 -'~-X 4 "~ X -1L 1 

X 17 -+ 'X 13 "~-X II " ~ X  8 "]- X "~- 1, 
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respectively, and can be factorized as 

(X 6 "~- X "~ 1)(X 1' - - X  5 -'~-X 4 + 1) 

and 

(X 6 -+- X-k- l ) ( x  11 -lt-X 7 - - X  6 + 1), 

respectively. 
Since the first factor is common to both Q's while the 

second factor is obtained by 'flipping the coefficients', 
we see that this example is similar to that of Calder6n & 
Pepinsky (1952). The main difference is that in the first 
case one starts from two sets 

( x +  1)Z(x2 - x +  1) 

( x +  1)(x 4 -+-x2 - x +  1). 

We see that in this case these polynomials are not 
obtained one from the other by 'flipping some zeros' 
with respect to the unit circle. 

Of course, the situation changes entirely if one 
factorizes over the ring of integer polynomials modulo 
the polynomial x a - 1. The relevant factorization is given 
by Rosenblatt (1984) as an example of the general result 
that the polynomials should be related (essentially) by 
'flipping one of the factors'. 

X = { 0 , 4 , 9 }  and Y = { 0 , 1 , 3 }  

and forms X + Y  as well as X - Y + 3  and then 
considers the characteristic functions of these sets. In 
the case of Bloom's (1977) example, one gives up the 
requirement that each factor in Q1, Q2 should have 
positive coefficients. This example is interesting in that it 
gives a counterexample to a result of Piccard (1939), 
asserting that if two sets have distinct nonzero elements 
in their difference sets then they have to be rigid 
translations (or reflections) of each other. 

Now we consider the example due to Patterson (1944) 
in a landmark paper that initiated the study of 
homometric sets. The polynomials R 1 and R 2 are given 
by 

x 4 + x 3  + x +  l 

and 

x5 + x4 -.t- x3 -+- 1. 

If one forms the difference 

R 1 (x)R 1 (1/x) -- R2(x)R2(1/x) ,  

one obtains 

- [ ( x -  1)2(x + 1)2(x ~ + 1)(x 4 + 1)/x~]. 

5. T h i r d - o r d e r  invar iants  

In this section, we study some consequences of using 
third-order information for rational-valued sequences cj. 
We give a mixture of uniqueness and nonuniqueness 
results depending on extra assumptions. 

5.1. Third-order  invariants: N odd and  d I n o n z e r o  

The purpose of this section is to show that, if N is odd 
and d I does not vanish, then third-order information 
determines the original sequence up to a shift. 

We start with the observation that the values of dj in 
the class of primitive Nth roots are determined by one 
free quantity. Since d I # 0, we know that d r -7/: 0 on the 
whole set of primitive roots (see {}3.3.). One can exploit 
the knowledge of the products 

di4cli+j 

to see that, if dj is another sequence with 

didjdi+j = didydi+j, 

then we have 

(1) 

a 2 = ( d l / d l ) 2 4 2  . 

Except for the factor 

(1 -- x)(x + 1) /x  5, 

this is just the polynomial 

x8- -1 .  

The consequence of this is that the difference in question 
vanishes at all 8th roots of unity. This is an example 
where the polynomials R 1 and R 2 have the same modulus 
only on these roots of unity and not on the entire unit 
circle. Franklin (1974) calls attention to this distinction 
when he talks about homometric and strictly homometric 
sets. 

The polynomials R 1 and R 2 factorize over the integers 
as  

The result above depends on one crucial point: one can 
reach the integer 2 by adding 1 and 1. The integers used 
in the process, namely 1 (and 1), are such that dj does not 
vanish on them and it is then possible to divide by d I at 
the end. This process can be repeated provided that one 
respects the rules given above: if an integer of the form 
i + j can be obtained as the sum of integers i and j that 
have been reached earlier and are such that d i and dj are 
both nonzero, one can, by induction, obain an extension 
of the relation given above. In fact, from 

and 

[l~ = ([t, ld, Y4 

~j = (2 , /d , )%,  



F. ALBERTO GRONBAUM AND CALVIN C. MOORE 315 

it readily follows that 

It is important to notice that subtraction plays a role 
similar to addition here and that one can replace i + j by 
i - j  in the arguments above. One just uses the fact that 
the sequence that has dj as its discrete Fourier transform 
is real valued and thus 

d-k --dk 

In view of this, we define an 'addition-subtraction chain' 
as a finite sequence of integers beginning with 1 and in 
which every member except 1 is the sum or difference of 
two not necessarily different previous members in the 
sequence. 

We made the empirical observation that as long as N is 
odd it appeared that one could always reach any integer 
that is relatively prime to N by such an addition- 
subtraction chain starting from 1, without ever leaving 
the set of integers that are relatively prime to N. These 
empirical observations led H. Lenstra to the following 
result. 

Theorem 1. Let N be an odd integer and let a be an 
integer that is relatively prime to N. Then there exists an 
addition-subtraction chain that ends with a and that 
consists of integers that are relatively prime to N. 

The proof of this result is given by Lenstra (1993). 
Using the result above and the arguments given 
preceding it, we have 

Theorem 2. Let d i and t~ i be two sequences with the 
same third-order information. If N is odd and dl does not 
vanish, then, for any i between 1 and N, 

cli = zidi (2) 

for some Nth root of unity z. 

Proof. The arguments above prove the result for any i 
which is relatively prime to N with the choice 

z =cll /dl .  

Since the result in Theorem 1 can be trivially extended to 
i - N [if g.c.d.(j, N) = 1 then g.c.d.(N - j ,  N) -- 1 and 
N can be expressed as j + (N - j ) ] ,  we see that the result 
is proved for i = N and, since d N = d o is real, we get that 

z N = I .  

Now any integer between 1 and N can be expressed as 
the sum of two integers i and j that are relatively prime to 
N. This is just a consequence of the result about 
'multiplication of residue classes'. 

Using (1) and the fact that (2) has already been 
established for integers that are relatively prime to N, we 
conclude that (2) holds for the integer i + j as well. This 
proves the theorem. We can finally state 

Theorem 3. If N is odd and d k, dk are the discrete 
Fourier transforms of two (rational-valued) sequences 
Cr, Ci with the same third-order information and d I -~ 0, 
then Oi is a 'shifted' version of ci. 

Proof. Since z is an Nth root of unity, we have z = w j 
for some integer j. It now follows immediately that 

?i = ci+j for all i, with addition mod N. 

5.2. Third-order invariants and d I = 0 

If the prime factorization of N contains at least two 
different primes but N is not equal to the product of these 
two distinct primes, then we can produce an example 
with d l =  0 such that third-order information is not 
sufficient to pin things down modulo a shift. 

The construction is given below. 
r I l'2 r s  Put N -- pl P2 -- .ps with s > 1 By assumption N/p~ 

and N/Pz  are not relatively prime. We assume that each 
rj above is positive. Moreover, we assume that if N is 
even we have p~ -- 2. 

Denote by Fa(x ) the cyclotomic polynomial corre- 
sponding to a divisor d of N. 

We define the polynomials P(x) and Q(x) by the rules: 

e(x) = (x ~ - 1 ) / [ ( x -  1)FN/.,(X)FN/.2(X)] 

X [FN/~,(x) + FN/.2(X)]. 

a(x) = (x ~ - 1 ) / [ ( x -  1)FN/p,(x)F~/.2(x)] 

x [IN~p, (x) + XFN/.2(x)]. 

There are two issues to consider. The first one is to 
establish that P and Q have the same 'third-order 
information'. The second one is to establish that P and 
Q are not shifts of each other. The first issue can be 
handled once one notices that both P and Q vanish in all 
but three of the 'classes'  of Nth roots of unity. The 
second issue is dealt with by contradiction making use of 
the Chinese remainder theorem of §3.3. 

This method of getting interesting different pairs of 
structures is used again in §6 to yield examples of 
structures that cannot even be distinguished by their 
correlations up to order four (an example with N = 12 is 
given) and order five (an example with N = 30 is given). 

5.3. N even 

The purpose of this section is to show that even if 
'third-order information' is avai lable  it is possible to 
construct pairs of cyclotomic sets in the sense of 
Patterson that cannot be distinguished. For the construc- 
tion below, it is important that N be even and greater than 
or equal to 30. 

Consider the polynomials 

p(z) = z 9 - z 3 + 1 
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and 

q l (z) = z 6 - z 4 -~- z 3 - z --[- 1 

q2(z) = z 6 - z 5 + z  3 - z 2 + 1, 

whose  products  

(Z 6 - -  Z 4 + Z 3 - -  Z "31- 1 ) ( Z  9 - -  Z 3 + 1) 

and 

(Z 6 - -  Z 5 -'~ Z 3 - -  Z 2 -'[- 1 ) ( Z  9 - -  Z 3 -k- 1) 

can be expanded  to read 

p(z )q l ( z  ) = z 15 - z 13 + z 12 - z 1° + z 7 - z +  1 

and 

p(z)q2(z ) = z 15 - z 14 31- z 12 - z 11 + z 8 - z 2 --[- l ,  

respect ively.  Observe  that, in the notat ion g iven  earlier,  
we  have  

In the first case, we  have  that j + k is even  and not  
equal  to 1, thus the last factor is zero on both sides. In 
e i ther  one  o f  the remain ing  cases,  the relat ion reduces  to 
the one  es tabl ished in (2) above.  

(4) Pl(z)  and P2(z) cannot  be related by a ' f l ip '  o f  
coeff ic ients  or a shift in the form Pl(z)  -- zRP2(z)u,  with 
R an integer,  and mul t ip l ica t ion  unders tood  m o d u l o  
z N _ 1, or a combina t ion  o f  these  operat ions.  

As an example ,  we  display the po lynomia l s  corre-  
sponding  to N = 82, which  provides  an expl ici t  e x a m p l e  
of  two essent ia l ly  di f ferent  Pat terson sets with the same  
third-order  invariants.  They  have  degree  g iven  by 
N / 2  - 1 + 15 = 55, and are g iven  expl ic i t ly  by 

Z 55 .71_ Z 54 

..[_ Z 43 

..[_ Z 34 

+ Z 26 

..[_ Z 18 

+ Z 52 ..[._ Z 51 + Z 47 -.[_ Z 46 ..[_ Z 45 .~- Z 44 

_ql_ Z 42 _.[_ Z 40 --[- Z 39 -.[_ Z 38 ..[_ Z 37 + Z 36 ..~ Z 35 

..[_ Z 33 + Z 32 + g 31 A 1_ Z 30 ..[_ Z 29 + Z 28 .~. Z 27 

+ Z 25 ..~ Z 24 + Z 23 -.~ Z 22 .~- Z 21 ..~ Z 20 ..~ Z 19 

+ Z  17 + Z  16 + Z  15 + Z  12 + Z  9 + Z  8 + Z  7 + 1 

q2(z) "- q*l(z). 

Take now the po lynomia l  (zN/2--1)/(Z--1)= 
1 + z + Z 2 + . . .  + Z N / 2 - 1 ,  which  is del iberate ly  chosen  to 
vanish at all the ' e v e n '  Nth roots of  unity, excep t  for 1 
itself, i.e. 

W 2, W 4,  W 6,  . . . ,  w Iv-2, w i th  w = exp(2r t i /N) .  

If the po lynomia l  above  is cal led r(z), we  c la im that 
the po lynomia l s  

Pl(Z) = r(z)p(z)q1(z ) a n d  P2(z) -- r(z)p(z)q2(z ) 

enjoy  the fo l lowing  properties:  
(1) They  both have  coeff ic ients  that are e i ther  0 or 1 as 

soon as N/2 - 1 is at least 14, i.e. for N equal  to at least 
30. This fol lows f rom the fact that r(z) will  have  at least 
15 coeff ic ients  all equal  to 1, whi le  the 'part ial  sums '  of  
the coeff ic ients  in p(z )q l ( z  ) and p(z)qz(z  ) are e i ther  0 or 
1, regardless  of  wh ich  ' e n d '  one  starts from. 

(2) On every  Nth root o f  uni ty (for that matter  for any z 
o f  unit  modulus) ,  

P,(z)P, (1 /z )  = e2(z)P2(1/z). 

This fol lows direct ly f rom the fact that Pl(z)  and P2(z) 
differ  by the rep lacement  o f  qt by q2 = q~'. 

(3) For all values of  j ,  k, we  have  

Pl (wJ)P1 (w t)Pl (w- j -k )  = P2(wJ)P2( w k)P2(w-J-k)" 

This fol lows f rom the presence  o f  the factor r(z) since 
every th ing  vanishes  unless  we  have  one o f  three 
c i rcumstances:  

(a) both wJ and w k are ' o d d '  Nth roots o f  unity; 
(b) one  o f  them equals  1; 
(c) k + j  = 0 (mod  N). 

and 

z 55 ..[_ z 52 + z 48 + z 47 .31_ 

_31_ z 40 + z 39 .3t_ z 38 + 

+ z  32 + z  3~ + z  3° + 

..[_ z 24 71_ z 23 ..~ z 22 ..4_ 

..[_ z 16 ..[_ z 15 + z 13 ..[_ 

z 46 .31_ z 45 + z 44 .~_ z 43 

z 37 --[- z 36 -~- z 35 -4- z 34 31- z 33 

z 29 _4_ z 28 _.[_ z 27 _at_ z 26 ..[_ z 25 

z 21 .~_ z 20 + z 19 + z TM .3t_ Z 17 

Z 12 + Z  ~° + Z  9 + Z  8 + Z +  1. 

Not ice  that in the first case we  have  al ternating strings 
o f  l ' s  and O's o f  respect ive  lengths  1, 6, 3, 2, 1, 2, 26, 1, 
6, 3, 2, 1, 2, 26. Not ice  the repet i t ive character.  In the 
second  case, we  have  lengths  g iven  by 2, 6, 3, 1, 2, 1, 26, 
and their repet i t ion 2, 6, 3, 1, 2, 1, 26. If  we  compare  the 
two structures, we  see ( a m o n g  other  things)  that the 'gaps  
o f  length six'  are sur rounded  by dif ferent  conf igura t ions  
and thus cannot  be ob ta ined  by any ' r igid mo t ion '  f rom 
each other.  The  same a rgument  can be seen to apply for 
arbitrary N, as long as it is even  and large enough .  

6. Fourth- and fifth-order invariants 

This sect ion is devo ted  to exhib i t ing  pairs o f  structures 
with non-negat ive  values for cj that cannot  be dist in-  
gu i shed  f rom fourth- or f i f th-order  invariants.  In fact, we  
can go b e y o n d  pairs, and show sets of  several 
indis t inguishable  structures as we  did in §2. 

W e  start with the case o f  N = 6 and g ive  an e x a m p l e  
that g rew out o f  a conversa t ion  with F. Levs te in  (private 
communica t ion) .  W e  get  two structures that cannot  be 
d iscr imina ted  f rom informat ion  o f  order  up to five. We  
use the m e t h o d  o f  §5 in two o ther  instances:  for N = 12 
we  exhibi t  two structures that cannot  be d iscr imina ted  by 
informat ion  o f  order  four, then an example  is g iven  o f  
two  structures with N = 30 that cannot  be d i s t ingu ished  
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even if  one uses all the information of order five. In these 
cases, we exhibit the factorization discussed by Rosen- 
blatt (1984). 

The case N = 6 

Consider now polynomials of the form 
(x + 1)(x 2 + x + 1)(ax 2 + bx + c), with a, b, c arbitrary 
integers. This is the most general polynomial that 
vanishes at all the sixth roots of unity of order 2 and 3. 

The choices [a = 2, b = 0, c = 5] and [a = 2, b = 1, 
c = 4] give, respectively, 2x 5 + 4X 4 + 9x 3 + 12x2+ 
1 0 x + 5  and 2x 5 + 5 x  4 + 10x 3 + 12x 2 + 9 x +  4. 

These polynomials are 'reversals' of each other but 
have the same information of orders 2, 3, 4, 5 and this 
information can distinguish (in principle) among such 
pairs. This example can be 'strengthened' by multiplying 
the two polynomials (mod x 6 - 1) so as to disguise the 
relation between the two sets. The resulting polynomials 
are very far from being 'related': they do not share any of 
their coefficients! 

If we multiply these polynomials by 1 + 3x, we get the 
pair of polynomials 

14x 5 + 31x 4 + 45x 3 + 42x 2 + 25x + 11 

and 

17x 5 + 35x 4 + 46x 3 + 39x 2 + 21x + 10. 

This example was mentioned in §2. 
This method can be used to produce lots of sequences 

[Co, Cl, c2 . . . . .  c 5] with a common set of invariants of 
orders 2 through 5, for instance, 

[25620, 30367, 104747, 174380, 169633, 95253] 
[93365, 24788, 31423, 106635, 175212, 168577] 
[47975, 17668, 69693, 152025, 182332, 130307] 
[86575, 22107, 35532, 113425, 177893, 164468] 
[69348, 17613, 48265, 130652, 182387, 151735] 
[36252, 21715, 85463, 163748, 178285, 114537] 
[17300, 50143, 132843, 182700, 149857, 67157]. 

Since no two of these numbers are the same, it is clear 
that the seven polynomials in question are unrelated. 

We now take up the method developed in the last 
section and use it twice. This will show that interesting 
examples can be found for other values of N besides 
N = 6 .  

Take N = 12(= 223) and observe that the roots of 
orders 4 (=  N/3)  and 6 (=  N/2)  are given by {3,9} and 
{ 2,10 }, respetively. 

We denote, as before, with F 4 and F6, respectively, the 
cyclotomic polynomials with these roots; more explicitly, 

F 4 = x  2 + 1, F 6 = x  2 - x +  1. 

We put 

F : (x 12 - 1)/[(x - 1)F4F6] 

and consider the product of this factor with either of the 
polynomials 

F 6 + x F  4 or  F 6 + F  4. 

In the first case, we obtain 

e(x) = x '° + 3x 9 + 3x 8 + x 7 + x 3 + 2x 4 

+ 2x3 + 2x2 + 2,x + 1; 

in the second case, we obtain 

Q ( x ) =  2x 9 + 3x 8 + 2x 7 --~X 6 --]-X 5 "-]- X' "-]-X 3 

+ 2 ~  + 3 x + 2 .  

By construction, these two polynomials are nonzero only 
at 12th roots of unity whose orders are 1, 4 and 6. In 
forming products of four values of these two polynomials 
P and Q at arguments w k with exponents k l, k2, k3, k 4 
that add to 0 mod 12, we only need to restrict attention to 
the 4-tuples. 

[0 ,0 ,0 ,0] ,  [0 ,0 ,2 ,10] ,  [0 ,0 ,3 ,9] ,  [2 ,2 ,10,10] ,  

[2 ,3 ,9 ,10] ,  [3 ,3 ,3 ,3] ,  [3 ,3 ,9 ,9] ,  [9 ,9 ,9 ,9] .  

Note that the polynomials P and Q coincide except when 
the argument is w ~ with k equal to a root of order 6, i.e. 
k -- 2, 10. At such k, one gets P by multiplying Q by w k. 
Since the integers 2 and 10 appear in the set of 4-tuples 
above only in the company of their complement mod 12, 
the products formed with P or ~ coincide. 

We observe that the structures that correspond to P 
and Q can be obtained, in the manner mentioned earlier, 
as the result of forming products A .  B and A .  B*, 
respectively. 

The structure corresponding to P is obtained by 
convolving 

A = {256, - 62 ,  73, 3 4 , - 6 8 , - 7 1 , - 4 4 ,  - 74 ,  

- 59, 46, 6 4 , - 8 3 } / 7 2  

with 

B = {12, 1 1 , 8 , 7 , 8 , 9 ,  10, 11, 10,7 ,6 ,9}.  

One obtains Q by replacing the second structure with 

B* = {12,9 ,6 ,7 ,  10, 11, 1 0 , 9 , 8 , 7 , 8 ,  11}. 

Observe too that the second structure has positive 
coefficients. It can be used all by itself to produce two 
structures B and B* (reversed and shifted versions of each 
other), which cannot be distinguished by information of 
order up to and including four. 

Finally, we use again the method of the last section to 
produce examples where information of order up to five 
is not enough. 

Take N = 30 and consider the partition of Z30 into 
'classes' made up of 30th roots of unity of orders given 
by the divisors N = 30. 
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We have, with {o) denoting the roots of order o, 

(1) -- {0} 

(2} = {15} 

(3) = { 10, 20} 

{5) = {6, 12, 18, 24} 

(6) = {5,251 

(10) = {3, 9, 21,27} 

(15) ---- {2, 4, 8, 14, 16, 22, 26, 28} 

{30} = {1,7, 11, 13, 17, 19,23,29}. 

The cyclotomic polynomials that vanish on the roots 
of  orders 1, 6 and 10 are given by 

F l ( x  ) = x - -  1, F6(x ) = x  2 - x +  1 

and 

Flo(X ) = x 4 - x 3 + x 2 - x + 1, 

respectively. 
The product of the remaining cyclotomic factors is 

given by 

F ( x )  = (x  3° - 1 ) / [Fl (x)F6(x)Flo(X)] .  

Since the degree of this polynomial is 23, the most 
general integer-coefficient polynomial that vanishes at all 
the roots of orders 2, 3, 5, 15 and 30 is of the form 

(a o + a l x  + a2x 2 + a3 X3 + . . .  d- a7x7)F(x) 

for integer coefficients a t. 
The polynomials P~ and P2 to be constructed below 

result from choosing the first factor to be 

F6(x ) + F,o(X ) = x 4 - x 3 + 2x  2 - 2x  + 2 

and 

F6(x ) + XFlo(x  ) = x 5 -- x 4 -31- X 3 + 1, 

respectively. 
Following the recipe of Rosenblatt (1984) one gets 

polynomials A, B such that 

PI ----An 

P2 -- An* 

and one has 

Pl (X)  : X 27 "~- 2X 26 "q- 3x 25 + 3X 24 -k- 2X 23 -+- 2X 22 -3 I- 3x 21 

+ 3x 2° + 2x  19 .31_ x TM _+. 231715 + 4 x  14 + 4 x  13 + 3x  12 

+ 2 x  11 + x  i° + x  9 + 2 x  8 + 2 x  7 + x  6 + x  5 + 2 x  4 

+ 3x3 + 4x2 + 4 x +  2, 

e 2 ( x  ) - -  x 28 + 2 x  27 + 2 x  26 -~- 2 ~  5 + 2x  24 + 2x  23 .3t- 3 x  22 

-k- 4X 21 -~- 3x 2° + x 19 + x 16 + 3x  15 + 4 x  14 -k- 3x  13 

+ 2x12 + 2x I1 + 2xl° + 2.~ + 2x8 +x7 +x5 

+ 3 x  4 + 4 x  3 + 4 x  2 + 3 x +  1. 

In this instance, too, the coefficients of the second factor 
B happen to all be non-nega t i ve .  This is important 
because it shows that, if one distinguishes a structure 
from its 'reversed version', then the polynomial B can 
already give rise to two different (but enantiomorphic) 
and physically meaningful structures. The inclusion of 
the extra factor A allows one (once again) to get 
equivalent pairs that look much more different from 
each other. These have the same data for orders 2, 3, 4 
and 5. Note, however, that the coefficients are no longer 
O's and 1 's as were the examples at the end of §5. 

7. T h e  m a i n  result:  s i x t h - o r d e r  i n f o r m a t i o n  suf f i ces  

For the convenience of the reader, we break the 
discussion into three parts; first the statement of the 
result, then a brief discussion of the overall strategy of 
the proof, then, in the Appendix, the details of the proof. 

7.1. The  s t a t e m e n t  o f  the resu l t  

T h e o r e m  4. (1) Given N, if two rational-valued 
~o) .~...~ ..(2) ; _ o 1 N 1. with Fourier sequences c a , , , , , .  , - . . , . , . . . ,  - 
g g ~1 ~J t2) " 

sequences given by d~,' and d~, ' ,  respectively, share the 
values of their rth-order invariants for r = 1, 2, 3, 4, 5, 6, 
i.e. 

d 0 )  d 0) d ( 0  d ( 0  = d (2) d (2) d (2) d (2) 
kl k2 k3 " ' "  kr kl k2 k3 " ' "  kr ' 

any time that k 1 + k z + . . .  + k r = 0 ( m o d  N )  or, equiva- 
lently, 

N-i  N-1 
..(1),..(1) (1) (l) ...(2),.(2) t.(2) . C!2) 

j = 0  j = 0  

for arbitrary choice of Jl, J2 . . . . .  jp and p = 1, 2, 3, 4, 5, 
then the sequences are 'translations' of each other: 

c•1) (1) 
= C)+ a 

or, equivalently, 

d~2) (1) k = d ~ w  a 

for a fixed integer a and all j ,  

for all k, with w = e x p ( 2 r r i / N ) .  

(2) If N is odd, and if the rational sequences c) 1) and 
c) 2) have the same invariants up to order four, i.e. for 
r = 1, 2, 3 and 4, then one is a shift of the other. 

In the language of group theory, one says that a(2) 
is obtained from d~ 1) by multiplication by the character 
w a, i.e. the  function that assigns to k the value w a~'. Recall 
that the sequences can be considered as periodic 
functions of the integer index j, with period N, and that 
addition is then considered mod N. 
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7.2. The strategy of the proof 
We first decribe the strategy of  the proof  of  part (1) of  

the theorem. 
We want to produce a function ~.(k), defined on Z N, 

which extends the ratio r/(2)/r/(1) when this is well defined ~*k I~k 
and satisfies ~.(kl)~.(k2) = ~.(k I + k2), or, in other words, 
is a character mod N. The real difficulty, as seen in the 
examples of  the previous sections, is that these sequences 
can vanish for several 'c lasses '  of  Nth  roots of  unity. 

The first step is to consider the case when d (2) (and 
hence also d °)) does not vanish on Z~,, the set of  
elements in Z N of order relatively prime to N. In Lemma 
1, we show how to extend the ratio d(Z)/d O) to a character 
~. defined on all of  Z N in this case. Then, we consider the 
case when d t2) does not vanish on Z h for Z M contained in 
Z N. The restrictions of  d (2) and d °) to Z M are the discrete 
Fourier transforms on integer sequences of  length M, so 
we can find a character ~-M on ZM for each M such that 
d (2) does not vanish on Z~. We can assume that these Z M 
generate Z N and then the problem is to piece together 
these ~.M's into a single character ~. on ZN. This we do 
using the Chinese remainder theorem as described in 
Lemma 2 in the Appendix.  Finally, once the proof  of  part 
(1) of  Theorem 4 is finished, we tackle part (2). 

The details of  the proof  are given in the Appendix at 
the end of the paper. 

8. Miscellaneous results and future directions 

8.1. Coefficients 0 and 1 

There is one additional result related to the main 
theorem of the previous section that should be men- 
tioned. This brings us back to an earlier theme in the 
paper when the sequences cj are sequences of O's and 1 's. 
In other words, we are returning to the case of  Patterson's 
cyclotomic sets. The result says that, with a minor 
restriction (which may in fact be unnecessary), the 
equality of  fourth-order invariants suffices in this case. 

Theorem 5. Let c) l) and c) 2), j = 0, 1 . . . . .  N - 1, be 
rational sequences, so that one of  them is a sequence of  
O's and 1 's, and suppose that dl l) = dtl 2) ~ 0. Then, if the 
invariants for r = 1, 2, 3 and 4 for the two sequences are 
the same, they are shifts of  each other. 

We say only a few words about the proof. Of  course, if 
N is odd, this is a special case of  the second part of  
Theorem 4 of  the previous section, so we can assume that 
N is even. As d(~ l) ¢ 0, we know that d <l) and d (2) do not 
vanish on Z~,, and we then use the type of  argument from 
the proof  of  the second part of  Theorem 4 to conclude 
that ~ . (x)=  d(2)(x)/d°)(x) can be extended to a well 
defined function on Zu/2 satisfying ~.(x)~.(y) = ~.(x + y) if 
x is in ZN/6. This produces a character on Zu/6 which we 
can extend to Zu and then, after shifting by it, we can 
assume ~ . (x)=  1 on Z~v/6. Then ~. is essentially deter- 
mined by its value g on the coset 1 + ZN/6 of Zu/6. The 
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problem is to show that g6 _ 1 so that ~ would be a 
character. One may show that if d~2)(x) is nonzero 
anywhere  in the three cosets 2 +Zu/6, 3 +Z,v/6 and 
4 + ZN/6, then g6 = 1 follows by equality of  fourth-order 
invariants. Hence, we can assume that 
d°)(x) = dt2)(x)= 0 on these three cosets. This implies 
that the polynomials 

e(i)(w) = Z ¢~ i)wj 

are divisible by the polynomials that define these three 
cosets. Then we use the fact that one of  these 
polynomials,  say p(l), has coefficients that are O's and 
1 's, and an explicit calculation shows that d (1) must also 
vanish in the cosets ZN/6 and 5 + Zu/6, which contradicts 
the assumptions. This completes the proof. 

8.2. Real-valued coefficients 

In this very short section, we see the effect of  allowing 
real-valued coefficients cj. For an arbitrary but fixed 
odd N, consider a sequence whose Fourier coefficients 
d k satisfy the following: 

d 0 =  1 d I = d _ l  = b ,  d k = 0 ,  for all o the rk .  

This means that cj is given by 

cj -- d o + 2b cos 2zr/Nj. 

Consider now the value of  any rth-order invariant 

d~,tdk2dk3...dk, 

with k I + k z + . . .  + k r = 0. The value of  this product 
will be zero unless the indices are restricted to lie in the 
set {0, 1, - 1  }. Take r as small relative to N and notice 
that the fact that the sum of the indices is zero forces the 
number of  indices that are equal to 1 to balance those that 
are equal to - 1. This has the effect that we can only read 
off  the value of  the quantity b 2, and not that of  b itself. Of  
course, once r is large enough, say N,  we can reach 0 by 
adding together N times the index 1, i.e. Nth-order  
invariants will distinguish (if N is odd) between a 
configuration and the one obtained by exchanging b into 
--b. 

Denoting by d k the sequence defined above and with 
dk the sequence (of Fourier coefficients) resulting from a 
change of  b into - b ,  we consider the possibility that an 
integer a might exist such that, for all k = l, 2 . . . . .  N,  
we have 

clk = dkw ak, w = exp(2zri/N). 

For k = 1, we get that a = N/2 ,  which is impossible i f N  
is odd. 

This shows that, once we admit real-valued coeffi- 
cients cy, it is impossible to produce a value of  r 
(independent of  N)  such that the invariants of  order less 
than or equal to r determine a sequence up to a shift. This 
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fits within a general theory for Abelian groups as given 
by Adler & Konheim (1962). 

8.3. We are presently trying to convert several of the 
'uniqueness results' proved in this paper under different 
restrictions into constructive algorithms that could prove 
applicable. At the same time, we are exploring the two- 
and three-dimensional versions of our results and of their 
'constructive counterparts'. We close this section with 
the display of two entirely different structures in Z 6 x Z 6, 
which have the same invariants of orders 2, 3, 4 and 5. 
One can also produce these examples in dimension three. 

We display the value of cij, 0 < i , j  < 5. The first 
structure is given by 

I 
729 872 495 587 608 571 
803 558 687 565 579 653 
511 632 601 624 596 631 
477 680 661 615 528 401 
723 653 691 597 338 377 
608 748 769 385 432 687 

and the second one by 

I 
740 863 471 552 625 576]  
832 553 677 568 573 6 7 1 |  
530 657 587 613 603 669 / 
512 663 656 604 537 4 2 5 | "  
720 659 673 568 343 387 / 
619 741 731 366 407 701J 

One could, of course, just take Cartesian products of the 
one-dimensional examples we have already produced, 
but these would not be intrinsically multidimensional 
examples. However, the examples we present here are 
not just products of one-dimensional examples. 

APPENDIX 
The details of the proof  

The proof [of part (1)] depends on two lemmas. In the 
first, we initially assume that M is even. At the end of the 
proof, we indicate how to deal with the (simpler) case of 
M odd. Although the statement of the lemma is 
independent of the parity of M, the proof is different in 
the two cases. 

We adopt the following notation: d~ 2) = f ( k ) ,  
d~ l) = g(k), ZM/2 = the subgroup of Z M made up of all 
the even integers in Z M, i.e. {0, 2, 4 . . . .  }. For any M, Z~t 
denotes the set of 'primitive roots' in Z M, i.e. those of 
order M. From the observations in §3, for M odd we have 
Z~ + Z~ = ZM ; fo rM even, we have Z~ + Z~ = ZM /2. This 
difference accounts for the separate treatment of the cases 
M odd and M even. 

Lemma 1. Assume that f and g are nonzero on Z~t. 
Then the quotient f ( k ) / g ( k ) ,  defined on Z~t and on all 

elements of Z M where g(k) [and thus f (k)]  does not 
vanish, can be extended to a character Z defined on the 
entire group ZM. There exists an a such that 

~(~) = w a* 

with 

w = exp(2rri/M),  k = O, 1, 2 . . . . .  M -  1. 

Proof  (M even). On Z~t we define k as the ratio f / g .  
Observe that in Z~t ~. has the 'additive property', i.e. for 
k 1, k 2, k l + k  2inZ~t ,  

)ffk,)k(k2) = Mk, + k2). 

By definition, this amounts to showing that 

f ( k l ) f ( k 2 ) / f ( k l  + k2) = g(kl)g(kz) /g(k  I + k2). 

Observe that all these operations are legitimate since f 
and g are nonzero for all the arguments involved. 

Now from the  fact that f ( - k )  = f* (k )  -- 
[1 / f (k )][ f (k ) f*(k)]  and the identity of the second-order 
invariants for f and g, namely 

f ( k ) f  ( - k )  = f (k) f*(k)  = g(k)g *(k) = g ( k ) g ( - k ) ,  

it follows that we have to prove 

f ( k l ) f  (k2)f  ( - k  I - k2) = g(k l )g(k2)g( -k  I - k2) , 

which is valid since we have assumed that third-order 
invariants coincide. We now use the fact that 
ZM/2 = Z~4 + Z~ to define ~. on Z,t/2 by the rule: if z 
in ZM/2 is given by z = x + y, with x, y in Z~t, then we 
put X(z) -- k(x)k( y) = [ f (x)/g(x)][ f ( y ) /g(  y)]. 

We have to show three different things: (i) that k is 
well defined; (ii) that it really extends to ZM/2 the values 
of the ratio f i g  for those values of the argument when 
the ratio is well defined ( f  and g nonvanishing); and (iii) 
that the 'additive property' carries over to k defined now 
o n  ZM /2 . 

(i) If z in ZM/2 can be written as z = x 1 + Yl = x2 + Y2 
with x I , x:,  Yl, Y2 in Z~4, we need to see that 

[ f (& ) / g(xl )][ f ( Yl ) / g( Y i )] = [ f (x2) / g(x2)][ f ( y2) / g( y2) ]. 

Notice, once again, that f and g are nonzero at all the 
arguments involved. With the same relations that were 
used earlier, this is equivalent to showing 

f (x, ) f ( yl ) f ( - x2)  f ( -y2)  = g(xt )g( y, ) g ( - x2 )g ( - y2 )  , 

which is true because x 1 + y~ - x 2 - Y2 = 0 by assump- 
tion and because fourth-order invariants agree. 

(ii) Suppose now that z in ZM/2 is such that f (z )  [and 
g(z)] is nonzero and that z = x + y with x, y in Z~t. We 
need to show that 

Mz) - [ f (x)/g(x)l[ f (y)/g( y)] = f (z)/g(z). 
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But this amounts to showing that 

f (x) f  (y) f  (--x -- y) = g(x)g( y)g(--x -- y), 

which is true by the identity of  third-order invariants. 
(iii) Finally, suppose that an element of  ZM/2, z~, can 

be written as the sum of two other elements in ZM/2, z2 
and z 3. We then have 

Z 1 --- X I "Jl- Yl' Z2 = X2 -+- Y2' Z3 = X3 -+- Y3' 

with all x; and Yi in Z~t, and we need to show that 

~.(Z1) = ~.(Z 2 -3 t- Z3) --- ~.(Z2)~.(Z3)  . 

The left-hand side is 

[ f  (x~)/g(Xl)][f (Y~)/g(Yl)] 

and the right-hand side is 

[ f (x2) /g(x2)][ f (Y2)/g(Y2)][ f (x3) /g(x3)][ f (Y3)/g(Y3)] .  

The desired identity follows from 

f ( x l ) f ( Y l ) f ( - x 2 ) f ( - Y 2 ) f ( - x 3 ) f ( - Y 3 )  

= g(xl)g(yl)g(--x2)g(--y2)g(--x3)g(--y3), 

which holds because x I + Yl - x2 - Y2 - x3 - Y3 - "  0 
and we have assumed that the sixth-order invariants 
coincide. 

Thus far, we have shown that ,k(k) defined for all k in 
ZM/2 (i.e. all even k, k = 0, 2, 4 . . . .  ) is well defined, 
agrees with the value o f f ( k ) /g (k )  when this makes sense 
and satisfies the additivity property. 

From the last property, it follows that for any k we 
have 

~.(2k) = ,k(2) k. 

Since we have M0) = 1 {0 = x - y with x in Z~t implies 
~.(0) = [ f ( x ) /g (x ) ] [ f ( - x ) /g ( - x ) ]  and this is 1 by the 
identity of  the second-order invariants }, we conclude that 

,k(0) = ~.(M) = ~.(2) M/2 = 1 

and, therefore, ~.(2) is an (M/2)th root of  unity, i.e. 
M2) = w 2" for some integer a and w = exp(2rri/M). 

In summary,  we have seen that for all k the values of  
f ( 2 k )  and g(2k) are related as follows: 

/ ( 2 k )  = g(Zk)~.(Zk) -- g(2k)w "2k. 

we now define ~. on the remaining values of  k, i.e. odd k, 
according to 

~.(2k + 1) = ,k(Zk)~.(1). 

Recall that ~ . ( 1 ) = f ( 1 ) / g ( 1 ) .  
We have to show that this definition (i) makes sense, 

i.e. it should agree with the values of  ~. as previously 
defined on Z~t, (ii) agrees with the value of the ratio 
f ( k ) /g (k )  when this is well defined and (iii) has the 
'additive property '  on the whole of  zM. 

(i) This follows from 3.(0) = 1. 
(ii) I f f ( 2 k  + 1) and g(2k + 1) are nonzero, we should 

check that 

~.(2k + 1) = ~.(k, + kz)~.(1 ) = f ( 2 k  -I- 1)/g(2k,). 

In the expression above, k~ and k 2 a r e  Z~t and such that 
k I + k 2 = 2k. Therefore, we have to show that 

[ f (k,)/g(kl)][ f (k2)/g(kz)][ f (1)g(1)] 

= f ( k ,  + k 2 + 1)/g(k, + k 2 + 1), 

which follows once again on the basis of  identity of  
fourth-order invariants. 

(iii) As to the additive property of ~. on the whole of  
ZM, if both arguments are even, i.e. in ZM/z, this has been 
checked earlier. If  one argument is even and one odd, we 
get 

~(2k,)~(Zk 2 + 1 ) =  ~(2k,)~.(Zk2)~.(1 ) 

= Z[Z(k, + k2)]~. (1) 

= Z[Z(k, + k2) + 1]. 

Finally, if both arguments are odd, we have to see that 

~.(2k, + 1)(2k 2 -{- 1) -- ~.(2k,)~.(1)~.(2k2)~.(1 ) 

= ~.[2(k I + k2)  + 2]. 

Observe that the last term is W az(kl +k2+l) ,  while the middle 
term is w~2(k'+k2)[~.(1)] 2. The identity in question results 
from the fact that 

, k ( 1 ) = w "  or - w  a, 

a fact that follows from ~.(2) = ,k(1) 2 = w 2a. 
In conclusion, ~. has been defined on the whole of  Z M, 

it extends the values of  the ratio f / g  when this is well 
defined and it has the additive property. Reasoning as 
before, we see that, for any k in {0, 1, 2, 3, . . . ,  M - 1 }, 

~(k) = ~(1) k. 

From ~.(1)M = ~ . ( M ) =  ~ . (0 )=  1, we conclude that 
~.(1) = w b for some integer b. More is already known, b 
can be taken to be either equal to a or to a + M / 2  [which 
amounts to a change in the sign of  M1)]. For simplicity, 
we denote the integer b by a, and we have thus shown 
that, for all k, 

f ( k )  - -  g ( k ) w  ak. 

This concludes the proof  of the lemma in the case of  M 
even. 

For M odd, we define ,k first on Z~t as before. We then 
extend it to the whole of  ZM by the rule: i fz  = x + y with 
z, y in Z~,  then ,k(z) = ~.(x),k(y). 

The same arguments given earlier can be used to show 
that this function is well defined, extends the ratio f / g  
when this makes sense and enjoys the additivity 
property. We are now finished with the proof  of  
Lemma 1. 
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We now turn to the general case when f and g 
may vanish on Z~. We make a list of all the subgroups 
Z M of ZN such t h a t f  (and hence also g) do not vanish on 
Z~t. Let these be ZM(I),ZM(2) . . . . .  ZM(k). One easily argues 
that these subgroups must generate all of Z N for 
otherwise all considerations can be restricted to the 
subgroup of Z N so generated. This means that N = 
1.c.m.[M(1), M(2) . . . . .  M(k)]. 

Lemma 1 above will produce a character ~'M(O on each 
ZM(i), which extends the function f / g  wherever it is 
defined on ZM(i). If we are fortunate enough that some 
ZM(i) = Z N, we are done, but in general we are not so 
fortunate and the next step is to show that these 
characters ~'M(i) defined on ZM( 0 fit together to give us 
a character ~. -- ~'N on Z so that ~'M(0 = ~'N on ZM( o. This 
will do the trick. The tool we use here is the Chinese 
remainder theorem that was reviewed in §3.3. Specifially, 
we have Lemma 2. 

Lemma 2. If ~'M(i) is a character on ZM( 0 with 
N = l.c.m.[M(1), M(2) . . . . .  M(k)] then there is a char- 
acter X on Z N with XM(i)= X on M(i)  if and only if 
~'M(i) .=. XM(j) on Zu(i) N ZM(j) (=-- Zgcd[M(i),M(j)]) for each 
pay  t,j. 

Proof. This is literal transcription of the Chinese 
remainder theorem. The set of characters of Z N is a cyclic 
group of order N and can be identified with the residues 
modN.  Thus, each XM( 0 is a residue r i modM(i)  and the 
hypothesis of the lemma translates into r i -  rj 
mod g.c.d.[M (i), M ( j)]. The desired character X o f Z  N is a 
residue modN that is congruent to r i modM(i) .  That 
such a residue exists is ensured by the Chinese remainder 
theorem. Conversely, the hypothesis of the lemma is 
clearly necessary for the existence of such a X. 

In order to complete the proof, we need to check that 
~'M(i) = ~'M(j) on ZM(i) A ZM(j). If X is in this intersection, 
then x is the sum of either two or three elements in ZM(i) 
and ZM(j) so x = k I + k2(+k3) = J l  +J2(÷J3), with k s in 
Z~( 0 and Jt in Z~(j), where the final summand may or 
may not be needed. Then the relation ~.~(i)(x) -- ~.M(j)(X) 
follows from equality of sixth-order invariants [or fourth- 
or fifth-order ones if only two elements in M(i)  or m( j )  
are required]. 

The proof of part (1) is now complete, and we turn to 
the proof of part (2) of the theorem. In the case of N odd, 
we can, by being a little more careful, do somewhat 
better and establish the result using only invariants up to 
fourth order as stated in the theorem. If we examine the 
argument above carefully, we see that the only place 
invariants above fourth order were used was in establish- 
ing the additivity property in the case when d (2) is 
nonvanishing on Z~,. That is, we need to know that 

~.(XI)~,(X2)~.(yi)~,(y2) = ~,(Z1)~(22) , (3) 

when x i, Yi and z i are in Z~ and x I + x 2 + Yl + Y2 = 
zl +z2.  

This follows immediately from equality of sixth-order 
invariants; equality of fourth-order invariants tells us that 
~.(Ul),~,(U2)--/X.(VI)~.(V2) if u i, v i are in Z~, and 
u~ + u 2 = v 1 + v 2. But suppose in (3) that we could fred 
an element u in Z N such that Yl + u, Y 2 -  U and 
xl + x  2 +Yl + u  are in Z~,. Then, from equality of 
fourth-order invariants, we conclude that 

X(yl)~.(y2) = X(y 1 + u)X(y 2 - u), 

~.(Xl)X(x2)X(y I + u) = X(x I + x 2 + Yi + u) 

and 

X(Xl + x2 + Yl + u)X(Y2 - u) = X(zl)X(z2). 

Evidently, (3) follows from combining these three 
equations. 

Now we have to find a u satisfying the three conditions 
above. The group ZN has one maximal subgroup for each 
prime p dividing N, namely the cyclic group ZN/p. 
Evidently, an element u of Z N is in Z~, if and only if it is 
not in any of these maximal subgroups ZN/p(O for each of 
the primes p(i) dividing N. The three conditions on u 
above simply mean that, for each p(i), u must not lie in 
three cosets of Z. Hence, if p(i)=~ 3, we can always 
select an element u meeting these conditions at p(i) and, 
therefore, if 3 does not divide N, we can always find a u. 
This completes the proof in this case. 

If p = 3, suppose that x I + x 2 is in ZN/3. Then, the 
initial condition on u coincides with the first and we can 
select a u meeting the conditions. It follows that 

X(x)L(y) = X(x + y) 

if x is in ZN/3. In particular, X is a character on ZN/3 and 
as such it can be extended to a character on all of Z s ,  say 
~.. Let us shift one of the original sequences by ~.' and 
relabel them c (1) and c (2). Then, the new ~.(x)= 
d(2)(x)/d(1)(x) must satisfy ~.(x)~.(y) = ~.(x + y) if x is in 
ZN/3 and ~.(x) = 1 if x is in ZN/3. This means that X is a 
constant on the cosets of ZN/3 and equality of fourth-order 
invariants easily implies that is a character. This 
completes the proof. 
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Abstract 

Ab initio calculations of static structure factors of fluorite 
(CaF2) are performed by a linear combination of atomic 
orbitals Hartree-Fock method as implemented in the 
CRYSTAL program. The effect of thermal motion is then 
introduced by taking into account the atomic mean 
square displacements given in the literature at different 
temperatures and leads to dynamic structure factors. 
Finally, a very slight displacement of fluorine ions with 
respect to their ideal position is considered, to simulate 
an anharmonic vibration or disordered structure so as to 
improve the agreement with experimental data. 

Introduction 

In a recent theoretical study of fluorite (CaF2), Catti, 
Dovesi, Pavese & Saunders (199 I) perfected and used an 
atomic orbitals (AO) basis set for calcium and fluorine, 
which allowed them to calculate and compare success- 
fully with experiment some ground-state properties: 
lattice parameter, binding energy, electronic and band 
structures, and elastic constants. The fully ionic nature of 
fluorite is clearly shown. 

In the present work, we have calculated the static 
structure factors of fluorite from the wave functions and 
density matrix obtained by CRYSTAL, an ab initio 
periodic Hanree--Fock program (Dovesi, Pisani, Roetti, 
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Caush & Saunders, 1989; Dovesi, Roetti & Saunders, 
1992) by using the same all-electron basis set and 
computational parameters as those previously defined by 
Catti et al. (1991). 

A perturbation of the Fock matrix by thermal motion, 
assuming that atomic displacements are independent and 
that the atomic orbitals follow nuclear movements 
(Azavant, Lichanot, R&at & Chaillet, 1994), allows us 
to calculate dynamic structure factors at any temperature 
by introducing the thermal mean square amplitudes of 
the atoms given in the literature. Thus, it becomes 
possible to compare theoretical and experimental values, 
provided that the latter have been corrected for secondary 
factors (scale, Lorentz, polarization, absorption, extinc- 
tion, anomalous scattering, thermal diffuse scattering). 
For comparison with our calculations, we have con- 
sidered all the experimental data sets obtained for fluorite 
in the last 30 years since Togawa's (1964) work. They 
include: (i) the measurements obtained on the same 
crystal (American Crystallographic Association single- 
crystal intensity project) by Abrahams et al. (1967) and 
their assessment and analysis done respectively by 
Mackenzie & Maslen (1968) and by Cooper (1970); 
(ii) the data obtained by Zachariasen (1968) with a small 
spherical crystal; (iii) the data set collected from a crystal 
of 90 ~tm by Bachmann, Kohler, Schulz & Weber (1985). 
These authors have also obtained intensities with 
synchrotron radiation for the same crystal and for a 
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